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Technical Issues

1. Low Voltage – SECA SOFC voltage is as low as 20 V, 
and silicon band-gap is 0.7 V. Any device junction 
means 3.5% conduction loss.   

2. High Converter Cost – Typical commercial power 
supply sold $1/W. It is desirable to drop the cost down 
to 4¢/W or $40/kW for the SECA 5-kW SOFC. 

3. Interfacing Converter and Fuel Cell – Power converters 
draw tremendous current ripple from fuel cell. What 
are the impacts? Is there a need for a better or more 
fuel cell friendly power converter? 

4. Slow Fuel Cell Dynamic – Power converters 
experience frequent and fast load transients, but the 
fuel cell source has a slow dynamic response. What 
are the impacts? How to deal with energy imbalance 
between source and load?  



A Typical Fuel Cell Power Plant
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• The DC/DC converter is the most crucial electrical interface 
to the fuel cell source

• Requirements for the DC/DC Converter:
High efficiency
High reliability
Low ripple current
Capable of start-up with auxiliary source   
Capable of communicating with fuel cell 
Low electromagnetic interference (EMI) emission



Steady-State Fuel Cell Test Results

60 Hz ac load 
voltage and current

Fuel cell 
voltage

Fuel cell 
current

• Significant 120 Hz voltage and current ripple present



Fuel Cell Voltage During Load Dump
From 1.1 kW to 500 W
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• Experiment with a 
3-kW PEM fuel cell 
and a 3.3-F ultra 
capacitor.

• Use incandescent 
lamps as the load.

• Ultra cap smoothes 
the load transient 
effectively.

• Fuel cell time 
constant is 
reasonably fast, in 
millisecond range.
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Fuel Cell Dynamic 
Response During 
Single-Phase 
Motor Start-up 
Transients

• Ultra cap absorbs 
significant current 
during load transient

• Dynamic fuel cell 
input current and 
voltage ripples are 
severe



R&D Objectives

1. Efficiency Improvement
2. Cost Reduction 
3. Ripple Current Reduction 
4. Fuel Cell System Dynamic Response Study



R&D Approaches for Efficiency 
Improvement

• Selection of circuit topology and control method
• Soft switching to eliminate switching losses
• Better utilization of power semiconductor devices
• Fully utilization of magnetic materials



MOSFET Conduction Loss as a Function 
of Breakdown Voltage Rating
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Power MOSFET is more cost effective at lower voltages
Selection of circuit topology should take into account the voltage 
stress of the device.   



Efficiency Modeling Approach 

• Fuel cell circuit modeling
• Transformer modeling
• Device modeling
• System loss modeling



Fuel Cell Static Modeling
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Data source: DOE SECA Modeling team report at Pittsburgh Airport, 10/15/2002 



Voltage and Power Characteristics used 
in System Simulation
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Transformer Core Loss Estimation
Determine flux density, Bmax

D: duty cycle 
Vin: input voltage 
N1: primary turns 
Ae: cross section area
f: frequency  

fAN
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e
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1
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⋅= For EE64 planar core
d: 3.15 
c: 1.6
a: 0.053
Ve: 40.7 cm3



Entire Converter System Loss Modeling

1. MOSFET conduction loss Psw = (√DI1)2Rds

2. MOSFET conduction loss Psw = (√DI1)2Rds

3. Transformer copper loss PTr-copper = (√DI1)2RTr1 + (√DI2)2RTr2

4. Transformer core loss PTr-core = kTrB2fsw

5. Diode loss Pdiode = √DI2(Vt +√DI2Rak)

6. Inductor copper loss PTr-copper = I2
2RLo

7. Inductor core loss PL = kL(∆i)2fsw

8. Capacitor loss Pcap = Iripper
2Resr + V1

2tanδ

9. Parasitic loss Ppara = sqrt(I1)Rpara

10. Auxiliary power supply loss Paux = Pconst + nQGVGf



Efficiency Comparison Among Different 
Technologies
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R&D Approaches for Cost Reduction

• Sensorless control technique development
• More integration to eliminate interconnects and 

associated manufacturing
• Design optimization to fully utilize devices and 

components
• Standardize interface to simplify connections



Major Component Costs in Quantity 
Production

• For the proposed converter, assuming 4 power MOSFETs in 
parallel along with six output diodes. At 1,000 quantity, total 
semiconductor cost = 4 × 6 × $2.4 + 6 × $2.05 = $69.9  

• For the planar transformer at 1,000 quantity, transformer cost = $60.
• For a quantity of >1 million, semiconductor cost is based on the

amount of silicon and plastic. For example, the TO-220 type 
package MOSFET and TO-247 diode can be negotiated down to 
~30¢ each. The total semiconductor cost becomes $9.00. Similarly 
transformer cost is based on the amount of copper and iron (~$4/lb). 
The transformer cost will be less than $20. 

• It should be noticed that in large quantity production price drops 
faster with semiconductor devices than with passive components.

• The complete converter cost of $200/5kW is difficult to meet with 
small quantity production, but not a problem with large enough 
quantity.   



R&D Approaches for Ripple Reduction

• Adopt a multiphase converter with interleaved 
control to cancel ripples 

IL1 IL2

Itotal = IL1 + IL2



Fuel Cell Current Ripple Comparison for 
Full-Bridge and the Proposed Converter
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R&D Approach for Fuel Cell System 
Dynamic Response Study

• First-order SOFC modeling with a finite time 
constant 

• Dynamic system modeling and simulation to 
understand the impact of load transient and to 
optimize the design



First Order Dynamic Modeling of SOFC
Rfc

Voc Load
(a) Model without dynamic: 

Select Voc = 43 V, Rfc = .07 Ω.
+
vfc
–

Rfc
(b) Model with first-order dynamic: 

Select Voc = 43 V, Rfc = 0.07 Ω, 
Cfc = 1.43 F. This assumes time 
constant = 0.1 second = 6 
electrical cycles.  

Voc Load
+

Cfc vfc
–

Case study:
Vfc = 29 V, Ifc = (43 – 29)/0.07 = 200 A, Pfc = Vfc × Ifc = 5.8 kW
With 95% dc/dc converter efficiency, dc output = 5.5 kW
If downstream inverter efficiency = 95%, then ac output = 5.2 kW



Simulated Converter Responses under 
Load Dump Condition with τfc=.1 s
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Results to Date

• Circuit topology has been selected for design 
optimization
– A patent disclosure regarding multiphase converter control 

has been prepared for filing 
• Complete system has been simulated for 

performance evaluation 
– Efficiency: 97% peak
– Ripple: <100 A peak-to-peak

• Power circuit board and transformer have been 
designed and built 



Prototype Multiphase Planar 
Transformer

Features:
• Low leakage inductance (<27 nH)
• Low core loss (<20 W) 
• Low copper loss (<20 W) 
• Low cost (<$60 in 1000 quantity) 

Specifications: 

Peak power rating: 10 kW for 1 minute 
Continuous power rating: 6 kW 
Total loss at 6 kW: 39 W



Virginia Tech DSP Board and Inverter 
Assembly

Power board

DSP board

Filter board



Virginia Tech First Generation Full-
Bridge Based Fuel Cell Converter
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New Design with Highly Integrated 
DC/DC Converter Assembly
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Summary of the Proposed Converter

• Fuel cell current ripple reduction: from 400 Apk-to-pk
to 100 Apk-to-pk and no negative spike as compared 
with full-bridge converter 

• Output current ripple reduction: reduced passive 
component losses   

• High efficiency: 97% peak efficiency at half load; 
96% efficiency at full-load

• Maintain soft switching over a wide load range
• DC bus voltage ripple reduction
• Sensorless control to reduce cost  



Applicability to SOFC Commercialization

• Lower the complete SOFC system cost by 
increasing power conversion efficiency

• Provide a low-cost and SOFC friendly dc/dc 
converter 

• Path the way for defining power electronics and 
SOFC interface protocol 

• Show dynamic load response and lead to energy 
balancing strategy between SOFC and output loads



Activities for the Next 6-12 Months 

• Complete power circuit testing
• Complete sensorless control software coding 
• Complete converter integration
• Test with dc power supply source and ac inverter 

load
• Work with SECA industrial team members to 

evaluate converter performance running under 
SOFC source

• Define fuel cell and converter interface ( phase II)
• Develop interface and communication protocol 

( phase II)
• Design package for the beta version ( phase II)
• Develop energy balancing strategy ( phase II)
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